Function-specific virtual screening for GPCR ligands using a combined scoring method

نویسندگان

  • Albert J. Kooistra
  • Henry F. Vischer
  • Daniel McNaught-Flores
  • Rob Leurs
  • Iwan J. P. de Esch
  • Chris de Graaf
چکیده

The ability of scoring functions to correctly select and rank docking poses of small molecules in protein binding sites is highly target dependent, which presents a challenge for structure-based drug discovery. Here we describe a virtual screening method that combines an energy-based docking scoring function with a molecular interaction fingerprint (IFP) to identify new ligands based on G protein-coupled receptor (GPCR) crystal structures. The consensus scoring method is prospectively evaluated by: 1) the discovery of chemically novel, fragment-like, high affinity histamine H1 receptor (H1R) antagonists/inverse agonists, 2) the selective structure-based identification of ß2-adrenoceptor (ß2R) agonists, and 3) the experimental validation and comparison of the combined and individual scoring approaches. Systematic retrospective virtual screening simulations allowed the definition of scoring cut-offs for the identification of H1R and ß2R ligands and the selection of an optimal ß-adrenoceptor crystal structure for the discrimination between ß2R agonists and antagonists. The consensus approach resulted in the experimental validation of 53% of the ß2R and 73% of the H1R virtual screening hits with up to nanomolar affinities and potencies. The selective identification of ß2R agonists shows the possibilities of structure-based prediction of GPCR ligand function by integrating protein-ligand binding mode information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to: A desirability function-based scoring scheme for selecting fragment-like class A aminergic GPCR ligands

A physicochemical property-based desirability scoring scheme for fragment-based drug discovery was developed for class A aminergic GPCR targeted fragment libraries. Physicochemical property distributions of known aminergic GPCR-active fragments from the ChEMBL database were examined and used for a desirability function-based score. Property-distributions such as log D (at pH 7.4), PSA, pKa (str...

متن کامل

New QSAR prediction models derived from GPCR CB2-antagonistic triaryl bis-sulfone analogues by a combined molecular morphological and pharmacophoric approach.

In order to build quantitative structure-activity relationship (QSAR) models for virtual screening of novel cannabinoid CB2 ligands and hit ranking selections, a new QSAR algorithm has been developed for the cannabinoid ligands, triaryl bis-sulfones, using a combined molecular morphological and pharmacophoric search approach. Both pharmacophore features and shape complementarity were considered...

متن کامل

Extracting Common Substructures of GPCR Ligands

G-protein coupled receptor (GPCR) proteins are transmembrane receptor proteins which sense outer signals and activate various signaling pathways inside the cell causing different cellular responses. They have a wide range of sensory functions including sensing light, olfaction, hormone reception and neurotransmission. They exist in every tissue of our body and play important roles in regulation...

متن کامل

Protein-specific Scoring Method for Ligand Discovery

Protein-based virtual screening plays an important role in modern drug discovery process. Most protein-based virtual screening experiments are carried out with docking programs. The accuracy of a docking program highly relies on the incorporated scoring function based on various energy terms. The existing scoring functions deal all the energy terms with the equal weight function or other weight...

متن کامل

Cheminformatics Meets Molecular Mechanics: A Combined Application of Knowledge-Based Pose Scoring and Physical Force Field-Based Hit Scoring Functions Improves the Accuracy of Structure-Based Virtual Screening

Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening (VS), which is most frequently manifested in the scoring functions' inability to discriminate between true ligands vs known nonbinders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from VS. We have hypothesized that filtering ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016